@Santiago Linari @maatii96 se precisa su intervención

Y después esto, del Washington Post (?)Surprisingly, not much lightning occurs in the inner core (within about 100 km or 60 mi) of the tropical cyclone center. Only around a dozen or less cloud-to-ground strikes per hour occur around the eyewall of the storm, in strong contrast to an overland mid-latitude mesoscale convective complex which may be observed to have lightning flash rates of greater than 1000 per hour maintained for several hours.
This lack of inner core lightning is due to the relative weak nature of the eyewall thunderstorms. Because of the lack of surface heating over the ocean ocean and the “warm core” nature of the tropical cyclones, there is less buoyancy available to support the updrafts. Weaker updrafts lack the super-cooled water (e.g. water with a temperature less than 0° C or 32° F) that is crucial in charging up a thunderstorm by the interaction of ice crystals in the presence of liquid water (Black and Hallett 1986). The more common outer core lightning occurs in conjunction with the presence of convectively-active rainbands (Samsury and Orville 1994).
One of the exciting possibilities that recent lightning studies have suggested is that changes in the inner core strikes – though the number of strikes is usually quite low – may provide a useful forecast tool for intensification of tropical cyclones. Black (1975) suggested that bursts of inner core convection which are accompanied by increases in electrical activity may indicate that the tropical cyclone will soon commence a deepening in intensity. Analyses of Hurricanes Diana (1984), Florence (1988) and Andrew (1992), as well as an unnamed tropical storm in 1987 indicate that this is often true (Lyons and Keen 1994 and Molinari et al. 1994).
Lightning forms as a result of triboelectrification, which stems from powerful updrafts that help to build electric charges. Thunderstorms are notorious for these updrafts of quickly rising air. But in a hurricane, the air does not rise upward. Instead, it swirls inward, eventually climbing a bit with each revolution about the core.